Algebraic Identities
$(i){{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab $$(ii){{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $
$(iii)({{a}^{2}}-{{b}^{2}})=(a-b)(a+b)$
$(iv)(x+a)(x+b)={{x}^{2}}+(a+b)x+ab$
$(v)(x-a)(x+b)={{x}^{2}}+(b-a)x-ab $
$(vi)(x+a)(x-b)={{x}^{2}}+(a-b)x-ab $
$(vii)(x-a)(x-b)={{x}^{2}}-(a+b)x+ab $
$(viii){{(a+b+c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca $
$(ix){{(a+b-c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab-2bc-2ca $
$(x){{(a-b+c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2ab-2bc+2ca $
$(xi){{(a-b-c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2ab+2bc-2ca$
$(xii){{a}^{3}}+{{b}^{3}}=(a+b)({{a}^{2}}-ab+{{b}^{2}}) $
$(xiii){{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}}) $
$(xiv){{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}} $
$(xv){{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}$
$(xvi){{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=(a+b+c)({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca) $
Conditional Identity
(xvii) If a+b+c=0, then${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$
Click Home for more Formulas and Properties
No comments:
Post a Comment