$1. {{a}^{n}}=a\times a\times a\times ...ntimes $
${{2}^{3}}=2\times 2\times 2=8 $
$2. {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
${{3}^{2}}\times {{3}^{3}}={{3}^{2+3}}={{3}^{5}}=243$
$3. {{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
${{5}^{4}}\div {{5}^{1}}={{5}^{4-1}}={{5}^{3}}=125$
$4. {{({{a}^{m}})}^{n}}={{a}^{mn}}$
${{({{2}^{3}})}^{2}}={{2}^{3\times 2}}={{2}^{6}}=64$
$5. {{(ab)}^{n}}={{a}^{n}}{{b}^{n}}$
${{(5x)}^{2}}={{5}^{2}}{{x}^{2}}=25{{x}^{2}}$
$6. {{(\frac{a}{b})}^{n}}=\frac{{{a}^{n}}}{{{b}^{n}}}$
${{(\frac{2}{3})}^{3}}=\frac{{{2}^{3}}}{{{3}^{3}}}=\frac{8}{27}$
$7. {{a}^{1}}=a$
${{6}^{1}}=6$
$8. {{a}^{0}}=1 $
${{45}^{0}}=1$
$9. {{a}^{-n}}=\frac{1}{{{a}^{n}}}$
${{5}^{-2}}=\frac{1}{{{5}^{2}}}=\frac{1}{25}$
$10. {{(\frac{a}{b})}^{-n}}=\frac{{{a}^{-n}}}{{{b}^{-n}}}=\frac{{{b}^{n}}}{{{a}^{n}}}$
${{(\frac{4}{7})}^{-2}}=\frac{{{4}^{-2}}}{{{7}^{-2}}}=\frac{{{7}^{2}}}{{{4}^{2}}}=\frac{49}{16}$
$11. \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{\frac{25}{64}}=\frac{\sqrt{25}}{\sqrt{64}}=\frac{5}{8}$
Click Home for more formulas and properties
${{2}^{3}}=2\times 2\times 2=8 $
$2. {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
${{3}^{2}}\times {{3}^{3}}={{3}^{2+3}}={{3}^{5}}=243$
$3. {{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
${{5}^{4}}\div {{5}^{1}}={{5}^{4-1}}={{5}^{3}}=125$
$4. {{({{a}^{m}})}^{n}}={{a}^{mn}}$
${{({{2}^{3}})}^{2}}={{2}^{3\times 2}}={{2}^{6}}=64$
$5. {{(ab)}^{n}}={{a}^{n}}{{b}^{n}}$
${{(5x)}^{2}}={{5}^{2}}{{x}^{2}}=25{{x}^{2}}$
$6. {{(\frac{a}{b})}^{n}}=\frac{{{a}^{n}}}{{{b}^{n}}}$
${{(\frac{2}{3})}^{3}}=\frac{{{2}^{3}}}{{{3}^{3}}}=\frac{8}{27}$
$7. {{a}^{1}}=a$
${{6}^{1}}=6$
$8. {{a}^{0}}=1 $
${{45}^{0}}=1$
$9. {{a}^{-n}}=\frac{1}{{{a}^{n}}}$
${{5}^{-2}}=\frac{1}{{{5}^{2}}}=\frac{1}{25}$
$10. {{(\frac{a}{b})}^{-n}}=\frac{{{a}^{-n}}}{{{b}^{-n}}}=\frac{{{b}^{n}}}{{{a}^{n}}}$
${{(\frac{4}{7})}^{-2}}=\frac{{{4}^{-2}}}{{{7}^{-2}}}=\frac{{{7}^{2}}}{{{4}^{2}}}=\frac{49}{16}$
$11. \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{\frac{25}{64}}=\frac{\sqrt{25}}{\sqrt{64}}=\frac{5}{8}$
Click Home for more formulas and properties
No comments:
Post a Comment