Arithmetic Mean
It is the sum of observation divided by number of observation. It is denoted by $\overline{X}$.Formula of Arithmetic Mean
For n terms,
$\overline{X}=\frac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+...+{{x}_{n}}}{n}$
$\overline{X}=\frac{1}{2}(\sum\limits_{i=1}^{n}{{{x}_{i}}}),here\sum\limits_{i=1}^{n}{{{x}_{i}}}$ denotes ${{x}_{1}}+{{x}_{2}}+{{x}_{3}}+..+{{x}_{n}}$
For n terms with frequency of each term given,
$ \overline{X}=\frac{{{f}_{1}}{{x}_{1}}+{{f}_{2}}{{x}_{2}}+...+{{f}_{n}}{{x}_{n}}}{{{f}_{1}}+{{f}_{2}}+{{f}_{3}}+...{{f}_{n}}}$
$\overline{X}=\frac{\sum\limits_{i=1}^{n}{{{f}_{i}}}{{x}_{i}}}{N}$
Where $N={{f}_{1}}+{{f}_{2}}+...+{{f}_{n}}$
Median
Formula of Median
For n terms,
If n = odd, thenMedian = Value of ${{(\frac{n+1}{2})}^{th}}$ observation
If n = even, then
Median = $\frac{valueof{{(\frac{n}{2})}^{th}}observation+valueof{{(\frac{n}{2}+1)}^{th}}observation}{2}$
Mode
It is the value which occurs most frequently in a set of observations.Properties of Arithmetic Mean
1. If $\overline{X}$ is the mean of n observations ${{x}_{1}},{{x}_{2}},..,{{x}_{n}}$ , then prove that $\sum\limits_{i=1}^{n}{({{x}_{i}}-\overline{X})=0.}$ i.e. the algebraic sum of deviations from mean is zero.
2. If $\overline{X}$ is the mean of n observations ${{x}_{1}},{{x}_{2}},..,{{x}_{n}}$ , then the mean of the observations ${{x}_{1}}+a,{{x}_{2}}+a,...,{{x}_{n}}+a$ is $\overline{X}+a.$ i.e. if each observation is increased by a, then the mean is also increased by a.
3. If $\overline{X}$ is the mean of n observations ${{x}_{1}},{{x}_{2}},..,{{x}_{n}}$ , then the mean of $a{{x}_{1,}}a{{x}_{2,}}a{{x}_{3,}}...,a{{x}_{n}}$ is $a\overline{X},$ where a is any number different from zero i.e. if each observation is multiplied by a non-zero number a, then the mean is also multiplied by a.
4. If $\overline{X}$ is the mean of n observations ${{x}_{1}},{{x}_{2}},..,{{x}_{n}}$ , then the mean of $\frac{{{x}_{1}}}{a},\frac{{{x}_{2}}}{a},\frac{{{x}_{3}}}{a},...,\frac{{{x}_{n}}}{a}$ is $\frac{\overline{X}}{a},$ where a is any non-zero number. I.e. if each observation is divided by a non-zero number, then the mean is also divided by it.
5. If $\overline{X}$ is the mean of n observations ${{x}_{1}},{{x}_{2}},..,{{x}_{n}}$ , then the mean of ${{x}_{1}}-a,{{x}_{2}}-a,...,{{x}_{n}}-a$ is $\overline{X}-a,$ where a is any real number.
Click Home for more Formulas and Properties
No comments:
Post a Comment